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LETTER TO THE EDITOR 

Quantum conductance of a lateral microconstraint in a 
magnetic field 
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8 Institute of Problems of Microelectronics Technology and High-Purity Materials, 
USSR Academy of Sciences, 142432 Chernogolovka Moscow District, USSR 

Received 18 May 1989 

Abstract. The G(d) function for a microconstraint was studied in the presence of a magnetic 
field (where G and d are respectively the conductance and diameter of a constraint). It is 
shown that spin splitting of a quantum step in the G(d) function increases with the step 
number n; hence the spin effects should be more pronounced at greater numbers. The study 
revealed that the effect of magnetic field on electron orbits does not destroy the adiabatic 
propagation of an electron wave through the constraint. The adiabaticity condition is main- 
tained if d is small compared to the curvature radius of a constraint. Accordingly, the s t e p  
plateau width ratio is small for all values H under consideration. Each width, however, 
increases parametrically at r,(H) -+ d (r,is the cyclotron radius). Theconductance properties 
in question are in agreement with the experimental data. 

Experiments [ 1,2]  have revealed quantisation of the conductance of a ballistic micro- 
constraint, defined in 2~ electron gas ~ D E G .  The diameter dof a constraint was controlled 
by the gate voltage. The electrostatic method of electron channel formation secured the 
smoothness of the constraint boundaries which allowed the occurrence of plateaus in 
the G(d) function to be attributed [3] to adiabatic propagation of an electron wave 
through the constraint. The properties of a constraint may be controlled by both the 
gate voltage and the magnetic field. 

The magnetic field H affects the orbital motion as well as the spin state of an electron. 
It is convenient to investigate the spin effects when the magnetic field is oriented in the 
plane of the ~ D E G ,  and the orbital effects are negligible due to spatial quantisation [4]. 
The experiment in [2] showed that the magnetic field so oriented splits the steps in the 
G(d) dependence. The step of a height e2/nti was observed to split into two steps with a 
height e2/2nh. Surprisingly, however, the spin splitting occurred only for steps with large 
numbers. 

The effective electron mass in a GaAs heterostructure is small. Therefore, if a 
magnetic field H is applied perpendicular to the plane of the ZDEG, then the magnetic 
field influence is implied mainly by orbital effects. These effects enhance with increasing 
d. In the experiment [5 ]  this led to considerable widening of both the plateaus and the 
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steps. The steps, nevertheless, remained clearly shaped when the cyclotron radius r is 
greater than d/2.  

This Letter presents a theoretical study of the effect of magnetic field on the G ( d )  
dependence. Firstly, it will be shown that the value of spin splitting of a step (at a given 
value of H> increases with the step number n faster than its width. Therefore, the spin 
effects are more clearly defined for large n. Hybridisation of the spatial and the magnetic 
quantisation terms occurs if the magnetic field H is perpendicular to the plane of the 
ZDEG, which changes the G ( d )  function. However, it will then be shown, that the 
magnetic field does not destroy the adiabatic passing of an electron wave through the 
constraint. The only condition required is the smallnessof d compared with the curvature 
radius R of the channel. When magnetic field is applied, the stepplateau width ratio 
remains small if the condition d / R  1 is maintained. Yet both widths increase para- 
metrically when r tends to d/2.  

Consider the case when magnetic field is oriented in the plane of the ZDEG and does 
not affect the orbital motion of an electron. The Hamiltonian of a system with the spin- 
orbit interaction is 

% = % , + & e ,  X o  = p 2 / 2 m  % I  = a a [ n p ]  - h!g /pBaH (1) 

where n is the normal to the ~ D E G  plane, p is the two-dimensional momentum of the 
electron, pB is the Bohr magneton, a are Pauli matrices; for GaAs the g-factor is g = 
-0.5 [6] .  Equation (1) should be completed by the boundary conditions for the wave 
function I$&, y ) ,  namely: 

%(x,Y)ly=id(x)/2 = 0, ( 2 )  

where the x axis is directed along the channel, d ( x )  is the channel width in the x section. 
The effective field corresponding to the characteristic energy of the spin-orbit interaction 
is Ho = 2apF/p&. In the case of GaAs the value H is of order of 1 T (we have used 
the value kF = lo6 cm-l from [1, 21 and LY = lo5 cm s-l [7] ) .  Since the electron motion 
transverse to the channel axis differs qualitatively from that along the channel, this 
would be expected to give rise to the anisotropy associated with the direction of external 
magnetic field H for H s Ho. It is easy to prove, however, that no anisotropy arises in 
the H-dependence of the step position and the spin-orbit interaction may be neglected. 
Let us use the perturbation theory assuming that &, is small. To zeroth order the 
wavefunctions found in the adiabatic approximation are of the form [3]:  

V,o(X, Y )  = ( 2 / d ( x ) )  ll2 sin{nn[y + d(x>/2l/d(x>)I$(x>xu. ( 3 )  

Calculating the matrix elements of the perturbation operator, we obtain the adiabatic 
Hamiltonian for the longitudinal motion of an electron. This Hamiltonian can be repre- 
sented as the operator in spin space 

E,(p,,x, 6)  = ( ~ h n ) ~ / 2 m d * ( x )  +p: /2m -t aP,6, - / & ~ a H / 2 ) .  

The diagonalisation of (4) is straightforward. For example, when H / /  x we obtain 

(4) 

E , t ( p , , X )  = ( ~ h n ) ~ / 2 m d ’ ( x )  +p2 /2m [(ap,)’ f (gpBH/2)2]1/2 ( 5 )  

The step in the G ( d )  dependence occurs when the mode is switched on. Switching 
takes place when EF = minPx E , , ~  (p,, 0). This means, that the longitudinal velocity of 
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an electron with the Fermi energy vanishes at the point of maximal constriction. It 
follows from ( 5 )  that the thresholdvaluesof z = k,d(O)/n are determined by the equation 

EF = E F ( n 2 / Z 2 )  * lglpBH/2 (6) 

where the terms of the order of ma? are neglected. Condition (6) is valid for all the 
orientations of the field Hin the 2DEG plane within the same accuracy. Hence, the energy 
scale of the spin-orbit interaction in the step position problem is ma2 (but not apF). This 
scale is negligibly small K in the case of GaAs). The perturbation theory used 
here is valid under the condition d(0) 4 h/ma; it is well satisfied even for d(0) as large 
as d(0) - 2 X lo3 8, (this corresponds to n = 10). Equation (6) leads to the following 
value of the spin splitting for the step n: 

The quantum width 6z of a step [3] increases with its number n as (n’/2/~2)(AF/R)1/2,  
where AF is the Fermi wavelength of an electron. Therefore, spin splitting is first mani- 
fested for the relatively high steps with numbers n > ns: 

S = (2/n2)  (A FIR)( E F / g v B  H) * (8) 

For such n the splitting Azs exceeds the width 62. 
We shall now deal with orbital effects for the magnetic field perpendicular to the 

plane of the ~ D E G .  Consider the condition of the adiabatic propagation of an electron 
wave through the constraint. The sharpness of steps in the G(z)  dependence at H = 0 is 
caused by the large value of the ratio R/d(O) ( R  is the curvature radius of channel 
boundaries in the region of the constriction). Now our aim is to find the relation between 
the step width 6 Z  and R in the presence of a magnetic field. This is reduced to the 
problem of the adiabatic motion of an electron in the presence of magnetic field. 

We first determine the adiabatic terms in the presence of a magnetic field. Under the 
Landau gauge the orbital part of the Hamiltonian has the form? 

2 = -(h2/2m)[a2/ay2 + (a/ex - i e ~ , , / c h ) ~ ] .  (9) 

The smooth variations of the channel width lead to the slow dependence of the longi- 
tudinal motion momentump on x .  Therefore, the wave functions of the adiabatic terms 
are of the form 

where the functions qI are the normalised solutions of the one dimensional boundary 
problem 

The boundary problem (11) gives a set of terms E l ( p ,  d ( x ) ) .  The functionpl(x) in (10) 
for an electron with energy E is determined by the solution of the equation El@, d ( x ) )  = 
E. Note that for each I there exist two solutions, p :  ( x )  andp; (x) ,  which differ in sign. 
t In this section we do not take into account the small spin splitting. 
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To study the transitions between the adiabatic terms we represent the solution of the 
Schrodinger equation in the form 

v ( x ,  Y )  = c c C;(x>v'((x,  Y )  (12) 
r I  

where the index r = t marks the states with different pi signs. The function c;(x)  varies 
on the spatial scale that is obviously to coincide with the scale of the function d(x) .  This 
scale is equal to (Rd(0))'" S= d(0 ) .  We determine the amplitude of the transition to the 
term (1, I )  from the initial term ( lo ,  ro): c;(x+ -m) = 6,io6,ro. For this purpose we 
substitute (12) into the Schrodinger equation with Hamiltonian (9). Using the smooth- 
ness of the dependence of functions c;(x), vr(x, y )  upon the x coordinate, at ( I ,  r )  # 
( lo, ro) we obtain 

where the function f ( x )  is composed of scalar products of the type 
( q r ( y ,  x ) ,  ( a / a x ) q I 0 ( y ,  x)), i.e. the spatial scale of variation off@) is (Rd(0))'12 which 
is large compared to d ( 0 ) .  It is obvious from (13) that small excesses & =  
E - Ei,(O, d(O))  of an electron energy E over the threshold value EI,(O, d ( 0 ) )  are most 
dangerous for adiabatic propagation. The maximal transition amplitude corresponds to 
1 = Io ,  r = r, due to the slowest variation of the exponential factor in (13).  The p , ( x )  
dependence in (13) can be determined by expansion of El,,(p, d(x)) near the extreme 
point 

6& = - / E & / x ~ / ~  + EPp(p2/2) .  

Here E h  = d 2 E i o / d ~ 2 ~ p , x = 0  < 0 ,  EjP = ~ 3 ~ E ~ ~ / a p ~ I ~ , ~ = ~ .  In the case under con- 
siderationp; = -pi:; with the help of (14) integral (13) is reduced to the form 

1 d x  F ( K )  e~p{( i /h) [EhE&]- ' /~6~[s inh(2~)  + 2x1). 

Application of the stationary phase method leads to the following result for the prob- 
ability R = IcLro 1' of the transition ( I ,  r,) + (I, -ro): 

RI,/ - exp(-bs/A/) A I  = (ti/2n)(ELp 1 1 )  (15) 

This transition corresponds to the reflection of an electron from the constriction into the 
same mode. The probabilities of transitions into other modes are parametrically smaller 
than RI,/. Therefore, the transmission coefficient is equal to Ti = 1 - RI,, and the 
decrement A, determines the energy dependence of 7',(6&). Thus, the width of the steps 
that occur in the conductance with increasing d is equal to 6di = Ar[aEl(O, d) /ad]- ' .  
Usin& the expansion d(x) = d(O) + x 2 / R  and (15) ,  it is easy to obtain 

62 = (h/n(2n)"2)(ELp a z /a  E$J "2 ( k , / R )  1'2 f = k&(O)/n. (16) 

The above problem is equivalent to that of an electron passing over a parabolic barrier. 
However, contrary to the case of H = 0, the field H affects both the carrier effective 
mass and the barrier parameters. If 6~ b A/, then the electron motion is described by 
the equations of classical mechanics with the Hamilton function El@, d ( x ) ) .  The classical 
description for the Fermi electron fails in narrow regions of the parameter 6s < SZ,. 
These regions correspond to switching of new modes. 
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We next obtain the dependence of G on z in a weak magnetic field. Let us assume 
that the cyclotron radius of the Fermi electron rc S d(O), and that the magnetic field can 
be regarded as perturbation (rc = uF/wc, wc = IZIH/cm is the cyclotron frequency). In 
the zeroth approximation the functions qn, being the solutions of the boundary problem 
( l l ) ,  coincide with the functions sin{nn[y + d(x ) /2] /d (x ) }  from (3). Using these func- 
tions to calculate the necessary matrix elements of the H-dependent operators in (11), 
we obtain 

E,(O, d ( 0 ) )  = (nhn)2/2md2(0) + kmofd2(0) ,  

E i p  = ( l /m)( l  + 8d2(0)/n4r2). 
(17a) 

(17b) 
to an accuracy of - H 2 .  

These formulae are valid for n % 1. To determine the step positions in the G ( z )  
dependence, the E,(O, d ( 0 ) )  should be set equal to the Fermi energy. The position of 
the step n is determined by 

2, = f &n2n3(hC0, /E~)2 .  (18) 

Z,+’ - 2, = 1 + &n2n2(H/H*)2. (19) 

Thus, the width of the plateau n is equal to 

We have introduced a characteristic value H* = chk t /2e  by way of hw,/EF = H / H * .  
Under the conditions of validity of the perturbation theory the changes of the plateau 
widths are small since the second term in (19) is of order of ( d ( 0 ) / ~ ~ ) ~ .  However, 
accumulation of these changes leads to a considerable shift in the position or” steps. The 
values z ,  - n exceed unity for 

z, > 6(rckF/3n)2’3. (20) 
The last inequality becomes true even in the weak field region (2, G rckF, or H G H * )  
since rckF - EF/hw, + 1. 

We now determine the step widths. Calculating by means of (17a) the quantity 
d2E,(0, d(O))/dz and using expressions (16) and (17b) we obtain 

6zn(H)/6z,(H = 0) = [l + &n2(d + 16/n4)n2(H/H*)2] 

The magnetic field causes step broadening which is small for the weak field H due 
to both the small parameter nH/H* - d/2rC 4 1 and the small numerical coefficient 
An2(& + 1 6 / d )  = 0.2. Calculations for small n show that the corresponding coefficient 
is negative only for n = 1 (and is also small). The sharpening of the n = 1 step results 
from the magnetic field induced enhancement of the effective mass which occurs for the 
ground term only. 

We now study the G ( z )  function for the range of strong fields, when 2rc - d(0 )  4 2rc. 
We assume, however, that the condition EF S hw, remains valid (the field is non- 
quantising). In the case under consideration large values of n are of interest. Therefore, 
the terms are determined by means of the semiclassical quantisation procedure. Since 
of particular interest is the switching process for a mode, the turning points for transverse 
motion should coincide with the boundaries of the channel, y = ?d(x ) /2 .  Using the 
Bohr-Zommerfeld rule we obtain 

H* = chkg/2/el .  
(21) 

(1 - 2YO/d(X)){E - [1 - 2Yo/~(x)12>”2 + [1 + 2Yo/d(x)l/{E - 11 + 2Yo/d(x>12}1’2 

+ E{sin-’[l - 2 y , / d ( x ) / ~ ~ ’ ~ ]  + sin-’[l + 2 y o / d ( x ) / ~ ” 2 ] >  = 4e&l2 (22) 
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where y o  = - c p / / e / H ;  E = 8E,(p, d ( x ) ) / m w : d 2 ( x ) ,  = 8Ei0) /mw;d2(x)  and ELo’ = 
(nhn)*/2md2(x) .  If the quantity d(0) approaches the 2r, value, then mwfd2(0)/8 = 
EF and E - 1 1. Therefore, from (22) we obtain 

E,(o, d(0)) = h o p  + $ ( ~ ~ / n ) [ ( 2 r , / d > ~  -- 113/? 

EFp = ( 2 / ~ c m ) [ ( 2 r ~ / d ) ~  - 1]-’/2. 

(23a) 

(236) 

Now let us estimate plateau widths. From the equation E,(O, d ( 0 ) )  = EF it follows 
that 

1 - JdZ,/2r,k~ = 5(3nhwc/4E,)2/3(EF/h0c - n)’I3. (24) 

We now introduce a parameter no = EF/hwc = M*/H. The integer part of this par- 
ameter determines the full number of steps in the G ( z )  function (at a fixed fieid value 
H ) .  At 1 < no - n 4 no equation (24) leads to 

z,+l - z ,  = (4/3n)1/3[n0/(n0 - 4p3. (25)  

The plateau widths increase parametrically when n tends to no. 
The width of steps can be found by formulae (16) ,  (23),  (24): 

6zn(H)/6z,(H = 0) = (2/n’/2)(4/3n)1/3 [no/(n0 - n)]’” no = H * / H .  (26) 

Thus, the step width also increases parametrically as II tends to no. The values 62, 
and z , + ~  - z ,  depend upon n according to the same law. The stepplateau width ratio 
remains small: &,,/(z,+~ - z,) - (rc/R)1/2 6 1, i.e. the step-like form of the function 
G(z)  is maintained in the strong magnetic field limit. It is important that in this limit 
the relation 

6 ~ , / ( ~ , + 1  - z,) = ( l / ~ ~ ~ ) ( d / 2 R ) ” ~  (27) 

coincides with the corresponding formula in the case of H = 0 with the same numerical 
factor, 

The theory developed above allows explaining the observed [2 ,5]  effect of the 
magnetic field on the conductance of a lateral microconstraint. 

It has been shown experimentally [2],  that for the in-plane magnetic field orientation 
spin splitting first occurs for steps with large step numbers n. This is in agreement with 
the conclusions drawn from equation (8). It has been demonstrated, that the value of 
spin splitting exceeds the step width for steps n > ns (see (8)). Here we estimate the 
value of ns for the conditions of the experiment [2]:  H = 13.6 T ,  AF = 400 A. To 
determine the value of R essential for calculations one can use the results of [8] for 
the electrostatics of the microconstraint. This value is approximately equal to the 
distance from the lithographic gap edge to the nearest boundary of the electrostatically 
confined electronic channel. Neglecting the thickness h = 800 A of the layer between 
the planes of the gate and ~ D E G ,  we obtain R = [D - d(0)] /2 ,  where D = 0.3-0.7 is 
the width of the lithographic gap. The channel width d(0) = nAF/2 in the experiment 
was equal to d(0) = 0.2 pm for n = 10. Therefore, neglecting of h is reasonable for 
the largest value of D. For D 2: 0.3 pm the quantity h should be taken into account: 
R = { [ D  - d(O)l2/4 + h2}’l2 [8]. Calculation by equation (8) yields ns = 3-10 which is 
in reasonable agreement with the experimental value ns = 10. 

The orbital effects were studied in the experiment [SI, where the magnetic field 
was applied perpendicular to the plane of the heterostructure. It should be noted that 
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0.15 0.20 0.25 0.30 

H / H *  

Figure 1. Dependence of normalised step 
widths on magnetic field H .  Curves A, B, 
C and D correspond to asymptotic depen- 
dence (equation (26)) for n = 3, 4, 5 ,  6 ,  
respectively. The experimental values 
were obtained by treating the curves from 
reference [5] for H = 0.7; 1.0; 1.8 T. 0, 
n = 3; 0 , n  = 4; U , n  = 5 ;  V , n  = 6 .  

considerable shifts of step positions were already observed in the region of n,  H ,  
where step broadening was negligible. This agrees with the conclusions made with 
regard to the G(z)  dependence in a weak magnetic field (equation (21)). Unfor- 
tunately, reference [5] does not contain sufficiently accurate information for com- 
parison with our equations (21) and (26) for step widths. We have attempted, however, 
to treat the experimental data of [5] for relatively large numbers n = 3-6, where the 
broadening of steps was considerable. The results of the comparison with equation 
(26) are shown in figure 1. We have chosen the value of H *  = 5.6 T, which corresponds 
to EF = 9.4 meV. 

In conclusion, it should be emphasised that in [3] the conductance quantisation has 
been explained by adiabatic propagation of an electron wave through the constraint. In 
this work we have generalised the above approach to include the case of an applied 
external magnetic field. The theory developed is able to account for the experimental 
results. 

The authors are grateful to D E Khmel’nitskii for stimulating discussions. 
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